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LIQUID CRYSTALS, 1989, VOL. 4, No. 3, 253-272 

Converging flow of tumbling nematic liquid crystals 

by ALEJANDRO D. REYt and MORTON M. DENN 
Department of Chemical Engineering, University of California at Berkeley, and 

Center for Advanced Materials, Lawrence Berkeley Laboratory, Berkeley, 
California 94720, U.S.A. 

(Received 4 May, 1988; accepted I0 August 1988) 

A similarity solution of the Leslie-Ericksen equations is obtained for flow 
between converging planes for nematic liquid crystals which experience a tumbling 
instability (a3 > 0). The relative intensities of the stabilizing extensional flow near 
the centre plane, the destabilizing shear flow near the bounding plane, and the 
stabilizing Frank elasticity near both the boundary and the centre planes admit a 
variety of director distributions, depending on the rheological parameters; all 
distributions become unstable at critical values of the Ericksen number, leading to 
splay-bend walls for C L ~  close to zero. A radial inhomogeneous magnetic field can 
suppress the instability. Closed-form analytical solutions are obtained for the 
transitions and the characteristic dimensions of splay-bend walls and boundary 
layers. 

1. Introduction 
The Leslie-Ericksen theory of the mechanics of nematic liquid crystals [ l ,  2, 3,4] 

predicts that the liquids can become ‘nonaligning’ in shear flow if the viscosity 
coefficient a3 becomes positive, leading to an inplane discontinuous transition in 
orientation known as tumbling. This phenomenon is also predicted by the liquid 
crystal theories of Hess [5, 61 and Helfrich [7]. Tumbling in shear flow has been 
observed experimentally [8,9, 10, 111 and studied analytically and numerically [12, 13, 
14, 151. Agreement between the theoretical predictions and experiment has been 
demonstrated by Carlsson and Skarp [I61 for steady flow between parallel plates and 
by Clark and coworkers [17] for oscillatory shear. 

The question of flow alignment is of fundamental importance for the processing 
of nematic liquid crystalline polymers, where large orientation gradients are observed. 
The extent to which the Leslie-Ericksen (LE) theory approximates the behaviour of 
nematic polymers is unclear, since the full range of behaviour of this continuum 
theory has not been explored. The Leslie-Ericksen viscosities can be obtained from 
the low deformation rate limit of Doi’s theory of liquid crystalline polymers [18]. (The 
Doi theory contains no analogue of the Oseen-Frank elasticity and cannot be applied 
to flows containing rapid changes in orientation.) a3 as computed in the Doi theory 
is close to zero; whether it is computed to be slightly positive [19, 201 or  slightly 
negative “21, 221 depends on the assumptions used in the analysis. Light scattering 
measurements of the Leslie-Ericksen viscosities in lyotropic liquid crystal polymers 
by Se and Berry [23] and Meyer and coworkers [24] would indicate negative x3 and 
flow alignment. 

t Present address: Department of Chemical Engineering, McGill University, Montreal, 
Quebec H3A 2A7, Canada. 
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254 A. D. Rey and M. M. Denn 

The introduction of elongational kinematics can cause new phenomena not found 
in simple shear flows [25, 261. We extend our study of steady in-plane similarity 
solutions for two-dimensional converging flow (JefSrey-Hamelflow) of nematic liquid 
crystals described by the LE continuum theory to flow regimes where periodic 
solutions and tumbling instabilities occur in simple shear. New phenomena are found 
because of the interaction of a stabilizing extensional component of the flow with the 
shear field. Solutions in which the director varies smoothly without large gradients 
(called periodic solutions by de Gennes [27]) are found for appropriate values of the 
rheological coefficients, while the introduction of elongation enables the existence 
of boundary layer behaviour as well. The boundary-layer regime gives rise to 
homogeneous structures with centreline regions containing rapidly-changing orien- 
tation distribution; these structures, for which multiple solutions of the nematic 
orientation with similar global free energies exist, are known as splay-bend walls and 
are analogous to Nee1 ferromagnetic walls [28]. The structure and appearance of the 
splay-bend walls can be altered by imposition of inhomogeneous magnetic fields. A 
schematic illustrating the qualitative difference between aligning (aj < 0) and tumbling 
(a3 > 0) flow behaviour is shown in figure 1 .  

--/ 
_______________-.-__--------------- < 

Figure 1. The two expected flow regimes for a nematic liquid crystal. (i) cx j  < 0: characterized 
by bulk flow alignment in the radial direction and elastic boundary layers of thickness 
6,. (ii) clj > 0: characterized by tumbling instabilities and periodic director orientation. 

2. Balance equations and boundary conditions 
The complete description of the mechanics of a nematic fluid requires the solution 

of the balance equations describing the velocity and orientation fields, which are 
coupled; the latter field is characterized by a unit vector n, known as the director. We 
have derived the balance equations for planar converging and diverging flow from the 
general Leslie-Ericksen theory in terms of similarity variables in [26]. Here we define 
the variables and present the equations. 

Jeffrey-Hamel flows are described in a cylindrical (v ,  $, z) coordinate system; see 
figure 2. The radial distance r is measured from the vertex of the plates. The total 
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Converging pow of nematics 255 

Figure 2. Schematic of Jeffrey-Hamel flow. W($) is the angle of the director with respect to 
a ray at angle $ from the centerline. +h0 = 0.5 in all calculations shown here. 

enclosed angle between the plates is 2$,,. We assume that the flow is radial, with no 
variation in the neutral (2 )  direction, so that v; = v$ = 0. The non-zero radial 
component of velocity is then expressed in terms of the similarity variable u($) as 
follows: 

u(*) v, = - 
r 

u($) is negative for converging flow and positive for diverging flow. The isotropic 
pressure is of the following form: 

p = -  o(') + constant. 
Y2 

We consider only flows in which the director is in the $ - r plane, in which case the 
two components are expressed in terms of the similarity variable W($) as follows: 

n, = cos W($), n+ = sin W($), (2.3) 
The flow rate per unit width, q, is a fixed system constant: 

The equations are non-dimensionalized by scaling the velocity with q and the elastic 
stresses with the coefficient of splay elasticity, K, ,  ; the kinematics are then described 
by the following two dimensionless groups: 

(2.5 a) 

(2.5 h)  

E is the Ericksen number, which defines the relative weights of the viscous and elastic 
stresses. R is a pseudo-Reynolds number, which defines the relative weights of 
the inertial and viscous stresses. K , ,  is chosen as the normalizing elastic coefficient 
because the dominant deformation with planar boundary conditions is splay, and our 
simulation is far from the nematic-smectic transition at which KJ3 diverges [29, 301. 
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256 A. D. Rey and M. M. Denn 

The linear momentum and director balance equations derived in [26] are then as 
follows: 

g(l  + W’)’ + p2  + a,u + a,uW’ + a3u’ + a,u’W‘ + aSu” + 20 = 0,  ( 2 . 6 ~ )  

3 
2 2  
g - - g’( W’)* - g’( W’)3 - 2gW“ - 2gW’W” + a&’ 

+ a,uW’ + UgU’W’  + agu” + a,ou - O’ = 0, (2.6 b) 

U‘ g (W” - 1 )  + gW“ + [A2cos2W + A , ]  - + [A2sin2W]u = 0, ( 2 . 6 ~ )  2 2 

g( W )  = K , ,  cos’ W + K3, sin2 W ,  

g ’ ( W )  = (KX3 - K,,)sin2W, 

(2.7 a) 

(2.7 6 )  

I ,  = a2 - a3, (2.8 a) 

A2  = a5 - a(j. (2.8 b) 

Al and A2 are the rotational and irrotational viscosities, respectively. The coefficients 
{a i}  i = 1, . . . 10, which are tubulated in Appendix I, are functions only of the Leslie 
viscosities {ai} and the function W($). For the special case K , ,  = K33 = K ,  which is 
used subsequently in some asymptotic analyses, g( W )  = K and g’( W )  = 0.  

Equations (2.6) are a set of coupled non-linear differential equations for the 
functions W($),  u($), and a($). The boundary conditions are as follows: 

u’(0) = 0, symmetric velocity profile, (2.9 a) 
4* $0). = 0, no slip a t  the wall, (2.9 6 )  

4 f $ o >  = g o ,  fixed reference pressure at the wall, (2.9 c) 

W(+$o)  = Wo, fixed anchoring angle at the wall, (2.9 d )  

w ( 0 )  = , centre line orientation. (2.9 e )  

Condition (2.9 e)  will be discussed in detail in 53. 
All calculations were carried out using material parameters for the compound 

4-n-octyl-4’-cyano biphenyl (SCB), as given by Kneppe and co-workers [3 1, 321 and 
Karat and Madhusudana [33]; the values are given in the table. It is convenient to 

Physical constants for 8CB 

e =  - a /  3 a2 
Viscosities/Pa s 0.01 0.05 0.2 0.54 e a  1 

.~ 

UI 0 0 0 0 0 
a2 - 0.0585 - 0.588 - 0.0697 - 0.0708 - 0.07 
a4 0.06 0.06 0.06 0.06 0.06 
a5 0.0356 0.0394 0.0485 0.0627 0.07 
E6 - 0.017 -0.0165 - 0’007 0.0323 - ea2 

Elastic constants 
(Newtons x 10”) 

Kl I 1 .o 1.03 1.28 1.41 1.45 
K33 0.9 0.95 1.37 2.09 2.39e 
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Converging flow of nematics 257 

parametrize the behaviour through the ratio 

e = -a3/a2 (2.10) 

here e is a strictly positive function of temperature for 8CB that changes sharply over 
a small (7°C) range. We have used assumptions of Carlsson and Skarp [16] that 
include a, = 0, the Parodi [34] relation (a6 - as = a2 + a3)  holds, and the critical 
behaviour of K33 is the same as that of ct3 as the smectic transition is approached. 
Solutions are restricted to values of e from zero to slightly greater than unity in order 
to avoid convergence problems associated with large values of e. This is not a serious 
restriction, since at temperatures for which e > 1 there is evidence that the hydro- 
dynamic unit of 8CB ceases to behave as a rod because of strong dipole interactions 
[35, 36, 371. 

Numerical solutions of the boundary value problem reported subsequently were 
obtained using the Galerkin finite element technique with linear shape functions over 
thirty spatial elements (e.g. Fletcher [38]). $o was taken as 0.5 in all cases. Newton- 
Raphson iteration was used for solution of the non-linear system of algebraic equations. 
Convergence was very sensitive in many cases to the selection of the initial estimates. 
Continuation was used to move through discontinuities at the limit points of the 
orientation profiles. Unstable solutions between branches were not calculated. 

3. Centre-line orientation 
Symmetry of the velocity profile and antisymmetry of the director orientation are 

assumed to exist around the center line, $ = 0. There are multiple solutions to the 
equation set; these are characterized by aligned ( W = 0) and transverse ( W = & n/2) 
orientations at the centreline. Convergence to the correct solution can be ensured by 
using only the half-space 0 < $ < t j 0  and setting the centerline boundary condition, 
rather than using symmetry. The boundary condition can be determined by a linear 
stability analysis, identical to the one carried out in [26], with the following result: 

e < l  e > l  
In-flow aligned transverse 
Out-flow transverse aligned 

4. Similarity solutions 
4.1. e = 1 

An approximate analytical solution to equations (2.6) can be obtained for the case 
ofa, = -a3 (e = 1, L2 = 0)  with the assumptions that K,, = K33, a, = 0, and that 
elastic stress contributions can be neglected in the linear momentum balance (equations 
(2.6 a, b)) but are retained in the torque balance (equation (2.6 c)). A decoupling of the 
linear momentum equation from the director equation is then suggested by evaluating 
the first two Miesowicz [39] viscosities (see, e.g., Chandrasekhar [40]) 

(4.1 a) 

(4.1 b) 

y, is the viscosity when the director is parallel to the flow, and yz is the viscosity when 
the director is parallel to the velocity gradient. If a2 = -a3 then yI = yz and the 
viscosity for in-plane flow becomes independent of orientation. The momentum 
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258 A. D. Rey and M. M. Denn 

equation can thus be put into a form that is independent of director orientation and 
identical to that for a newtonian fluid, for which an analytical solution exists, e.g. [41]; 
in the limit R = 0 (and q ,  of the same order as a3)  this solution is 

(4.2) 
U cos2* - cos2*, 
q sin2$, - 2$,cos2$, ’ 

U($)  = - = 

The director equation ( 2 . 6 ~ )  with 1, = 0 is then 

(4.3) 
E 

W + y U ’  = 0, 

The solution for radial orientation at  the centreline (W(0)  = 0) is 

(4.4) 
E 

W(+) = - [$ sin (1) - +sin (2$)], 
2Y 

where 

y = sin 2$, - 2$,cos 2 4 ~ ~ .  

The solution with transverse orientation (W(0) = - 4 2 )  is 

n 
1 2  

W = - E  E - sin21~/ + sin(1) + n + - - .  
4Y 

(4.5) 

(4.6) 

To determine which profile is the more stable we use the principle of minimum 
entropy production (see, e.g., deGroot and Mazur [42], but note that Astarita [43] has 
demonstrated that that this principle is not universally applicable to non-newtonian 
fluids). The rate of entropy production per unit volume for the Leslie-Ericksen fluid 
is given by Leslie [l]; in terms of the similarity variables for this flow the equation is 

(a, + U6) uz + U’* 
I 4  [ T I  TS = (a, + a3) ( f )  [usinzw - - c o s 2 ~  U’ + 2 

This simplifies for the special case e = 1 to 

]$ + + ,,,I; TS = 

and, as expected, the entropy production does not depend on the director orientation. 
Both profiles are thus equally stable by this criterion, and a transition from radial to 
transverse alignment at the centreline will occur if we impose a temperature program 
that causes the property ratio e to pass through unity. (This transition will undoubtedly 
have associated with it in practice a degree of super- or sub-cooling.) The calculated 
orientation profiles at e = 1 are shown in figure 3 for two values of the Ericksen 
number. 

4.2. General case: e > 0 
For the general case of positive e, equation (2.6) must be solved numerically. The 

centerline orientation is radial for 0 < e < 1. Computed orientation profiles for 
P = 0.2 are shown in figure 4 for a series of Ericksen numbers. The maximum angle 
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Figure 3. The two equally stable director distributions for the special case e = 1. 
A, B, E = 12; C ,  D, E = 90. 
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Figure 4. Director orientation profiles for e = 0.2 before (A, B) and after tumbling (C). 
A, E = 62.4; B, 84; C, 107. There is a discontinuous jump in the maximum angle between 
B and C. 

increases smoothly with E until a critical value, after which it undergoes a dis- 
continuous jump indicating the onset of tumbling. The maximum angle is shown in 
figure 5 as a function of the group E/(l + e) for three values of e. The series of 
discontinuous tumbling transitions fore = 0.2, with multiple solutions and hysteresis 
characteristic of a 'fold catastrophe' [44], gives way to smooth behavior in a way that 

0 100 200 300 
E / (  l + e )  

Figure 5. Magnitude of the maximum angle as a function of E/(1 + e). e = 0.2; 
, e = 0.54; -, e = 1. . . . .  
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260 A. D. Rey and M. M. Denn 

0.6 - 
0.5 - 
0.4 - 

0 2 4 6 8 10 

-ow( mi: (DYNES) 

Figure 6. Magnitude of the flow rate per unit width ( 4 )  as a function of the reference wall 
pressure for various values of e;  -.-.-, e = 0.2; . . . ., e = 0.54; -, e = 1. 

can be thought of as translating the instability to infinite values of E. As e increases 
towards unity the nematic behaves more and more like a newtonian fluid, as discussed 
previously. The results are replotted as flow rate per unit width versus the similarity 
variable for pressure (equivalent to a wall reference pressure at a fixed upstream 
position) in figure 6. Throughput initially increases with increasing upstream wall 
pressure for each value of e, as expected, but the effect of the tumbling transition is 
to cause a decrease in throughput as the pressure passes through a critical value; this 
is because the transverse orientation of a nematic liquid is more resistant to flow. 
(Carlsson [ 141 has analysed shear flow between parallel plates using the minimum 
entropy production principle, where the control variables are either the plate velocity 
or shear stress. These correspond to the flow rate, q, and the wall reference pressure, 
cro, respectively, in the present context.) 

h 

(I) z 
9 n a 
!5 

!! 
a 

r 
a 

. 
a z 
I 
3 

X 

2 
0 30 60 90 120 150 180 

E / ( l + e )  
Figure 7. Magnitude of the maximum angle as a function of E/(1 + e) .  -, e = 1; 

, e = 1.5. . .  . .  e = 1.2. _._._ 

Similar behaviour occurs for e > 1, but the centreline orientation is now trans- 
verse. The maximum angle is shown as a function of E/(l + e )  in figure 7. The fluid 
behaves hydrodynamically as a newtonian liquid for e = 1, and the transitions in 
maximum angle sharpen with increasing e until the cascade of tumbling instabilities 
is again introduced. 
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Figure 8. Scaled velocity profile just before the tumbling instability (A) and just after 
tumbling (B); e = 0.2, E = 36. 

The velocity profiles are relatively insensitive to the dramatic changes in the 
director profile at the onset of tumbling. The two velocity profiles shown in figure 8 
for e = 0-2 occur just before and after the director transition; the largest deviation 
in either profile from the one given by equation (4.2) is less than five percent. 

5. Boundary layers and walls for e 4 1 
The presence of elongational torques in the neighbourhood of the centerplane in 

converging flow modifies the behaviour produced by a simple shear flow. One import- 
ant example of this change is the possibility of boundary layer behaviour near the 
plate for a3 > 0, which is impossible for simple shear. (We use the terms ‘plate’ and 
‘boundary plane’ for the solid surface in order to retain ‘wall’ for the splay-bend wall 
induced in the director orientation.) The stable angle of alignment of the director in 
the core (i.e., away from the bounding plane), W,, where elastic stresses are not 
expected to be important, is readily shown in the absence of tumbling to be (c.f [26]) 

The argument of the radical becomes zero at a distance from the plate that depends 
on the magnitude of e; a good estimate for e 4 1 is obtained by assuming a linear 
velocity profile close to the plate, 

2.4 = -b(* - $019 (5.2) 

where /3 is a constant. The argument of the radical vanishes at a critical angle $* given 
by 

** = *o - 
Je . 

1 - e  (5.3) 

Fore  < 1 the core solution will extend very close to the plate, where it must undergo 
a rapid change to the induced boundary orientation. As e becomes larger the solution 
will change from the boundary-layer behaviour and will instead adopt a smooth 
(periodic) profile. Computed profiles illustrating the boundary layer behaviour for 
e = 0.01 are shown in figure 9. 

The orientation adopted by the director near the plate after the onset of tumbling 
retains the boundary layer structure, while the centreline region exhibits a splay-bend 
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- 0 . 1 2 ,  . I - I . I . I . ~1 
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ANGULAR DISTANCE / (RADIANS) 

Figure 9. Orientation profile exhibiting boundary-layer behaviour fore = 0.01, A, E = 571; 
B, 1146; C ,  1757. 

-1 1 
0 400 800 1200 1600 21 

E 
I0 

Figure 10. Maximum angle as a function of E for first tumbling, e = 0-01. 71 v ;  

Figure I I .  

-.P--I -4 

-a -6 - 
-0.5 -0.3 -0.1 0.1 0.3 0.5 

ANGULAR DISTANCE I ( RADIANS) 

(a) Schematic of the splay-bend wall following tumbling. (6) Orientation profiles 
for aligned and tumbled solutions, e = 041, E = 1767. 

wall. The maximum angle remains close in magnitude to nz,  n = 0, 1, 2 . . . , where 
tz is the number of tumbling instabilities; cf. figure 10 for the first tumbling. Two 
co-existing profiles at the first tumbling transition for e = 0.01 are shown as curves 
A and B in figure 11 (h), where the splay-bend wall at the centreline following tumbling 
shown schematically in figure 11 (a) is clearly seen in curve B. The boundary layer at 
the plate in curve A, prior to tumbling, cannot be resolved on this scale. (Since walls 
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6000 

5000 - 
4000 - 

,$ 3000 - 
2000 - 
1000 - 

0 

are narrow regions of high elastic energy, where the distortions of the director are 
large, the question naturally arises as to what other possible solutions are possible 
which might demand less elastic energy. Curve C in figure 11 is obtained by allowing 
the centreline orientation to be transverse at a value of - x, which is indistinguishable 
from the value of zero; solutions are possible for all stable centreline orientations of 
W(0) = nn, n = 0, +_ 1, & 2, . . . There does not appear to be any smooth way to 
obtain profile C with increasing Ericksen number without a large perturbation in the 
orientation.) 

The critical Ericksen number at which tumbling occurs and the splay-bend wall 
arises at the centreline can be estimated for e << 1 using a singular perturbation 
analysis to obtain the bounding plane (inner) solution that matches the core (outer) 
solution given by equation (5.1). The detailed treatment is contained in Appendix 11. 
One arbitrary constant of order unity, corresponding to the fractional value of 
$* - which smooth inner and outer solutions are matched, must be introduced; 
the value used for the best results is 6/5.  The critical Ericksen number at which the 
first tumbling transition occurs is found to be 

1 . 1 . 1 . 1 . ’  

Here U; = U’($o). $* is given by equation (5.3) and a by 

( 1  - e) J e  a =  
(1 + e)Je + $(I  - e’)($* - 

’ 

An estimate of the boundary layer thickness is given by 

C 
- Uke J E  ’ 6, = 

with 

(5.4) 

(5.7) 

The critical Ericksen number for the onset of tumbling predicted by equation (5.4) is 
plotted as a function of e for e 4 1 in figure 12, together with values obtained from 
the complete numerical solution. Agreement is extremely good. 
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264 A. D. Rey and M. M. Denn 

6. Magnetohydrodynamics 
The balance equations for inhomogeneous radial and azimuthal magnetic fields in 

converging and diverging flows of LE fluids were derived in [26], where the motivation 
was to study the possibility of controlling orientation distribution. We explore here 
the possibility of changing the onset of tumbling by applying radial magnetic fields. 
A similar problem using an electric field in shear flow as analysed by Carlsson and 
Skarp [45]. 

Compatibility with the similarity transformation and the Maxwell equations 
requires that the magnetic field have the following form: 

H = [;,;,o]. A B  

The dimensionless group that appears in the balance equations (see [26]) is the Zocher 
number, Z 

Ax is the anisotropic magnetic susceptibility. The Zocher number gives the relative 
magnitude of magnetic to elastic torques; the relative magnitude of viscous to magnetic 
torques is given by 

The anisotropic magnetic susceptibility of 8CB is of the order of which is typical 
for liquid crystals [46] (the SI value for magnetic susceptibility is obtained by multiply- 
ing the unrationalized cgs value by 4n; the cited literature data use the latter); 
temperature-dependent values are given in 1471, but all calculations were carried out 
in terms of dimensionless variables. 

A radial magnetic field influences the flow in two ways: the field induced director 
alignment in the radial direction, thus stabilizing the shear-induced instability; the 
field also causes a position-dependent body force. The latter causes an effective 
pressure gradient that acts against the flow and hence retards the motion and reduces 
the Ericksen number for a fixed wall reference pressure. The effect of an azimuthal 
field on converging flow is qualitatively different. The magnetic body force still acts 
to retard the flow, but the field tends to induce a transverse alignment during inflow 
and therefore destabilize the alignment of the director even further. 

The stabilizing effect of a radial field is readily demonstrated by an analysis 
analogous to that in $5. The outer (core) solution for the director orientation in the 
absence of elastic effects is given by 

(6.4) 

where the positive sign is chosen for stability reasons. The maximum angle possible 
without tumbling then follows from the vanishing of the argument of the radical to 
be 

tan W,,,,, = - Je  (6.5) 
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and the critical value of D( = D,) beyond which tumbling cannot occur is 

I + e  
2 Uh Je 

D c =  -~ 

A singular perturbation analysis analogous to the one in Appendix I1 results in a 
first approximation to the inner solution that is not amenable to further analysis, so 
a full numerical solution is required to proceed further for values of D < D,. The 
surface of critical Ericksen numbers for the tumbling transition is shown in figure 13 
in terms of D and e.  As expected, a given field intensity will have the greatest 
stabilizing effect for small e, for the reason that the shear torques are less destabilizing 
then. As e is increased (i.e. the temperature is lowered) strong radial fields will be 
necessary to suppress the tumbling for a given flow rate. The intersection of the 
surface with the ( l / D ,  e )  plane as E, + 00 defines D, as given by equation (6.6). 

Figure 13. Three-dimensional stability space of 8CB in Jeffrey-Hamel flow. 

7. Splay-bend walls 
We analyse here the wall-like structures that can be created by flow alone, and by 

the interaction of flow and non-homogeneous magnetic fields. The walls which we are 
treating here are similar to those first discussed by Helfrich [28] for static defor- 
mations; they are of the splay-bend type, because splay and bend are the curvature 
strains present. 

To address the splay-bend walls that result from the tumbling instability in the 
plate boundary-layer regime (e 4 1) we again pursue a singular perturbation analysis, 
but we now also look for a boundary layer at the centreline. Details are contained in 
Appendix 11. The thickness &(E) of the splay-bend wall about the centreline ($ = 0) 
is then found to be 

2 

Here, U, = U(0).  The corresponding boundary layer thickness at the bounding plane 
(I/ = lcl0is 

&(E) = /(A). - UkeE (7.2) 
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Figure 14. Effect of a 
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radial magnetic field on wall thickness. e = 0.01, E = 1767; 
A ,  Z 2  = 0; B, 2360; C, 31508. 

For the general case of m-tumbling instabilities we just modify the numerator in 
equation (7.2) by replacing 271 with 2mn. In this case the director undergoes a rotation 
of 2mn radians in traversing the wall, which is parallel to the flow direction. 

When an inhomogeneous radial magnetic field, H = ( A / r ,  0, O), is applied to the 
tumbled flow we expect to obtain narrowing of the splay-bend centreline wall, and this 
is observed; cf. figure 14. The qualitative features are otherwise unchanged from the 
tumbled flow in the absence of a field. The singular perturbation estimate of the 
centreline wall thickness is modified by inclusion of the Zocher number to 

(7.3) 

In contrast, the application of a sufficiently strong transverse magnetic field, H = 
(0, B/r ,  0), to the tumbled flow will result in a splay-bend wall perpendicular to the 
field; the director rotates only n radians in traversing the wall. Orientation profiles for 
different azimuthal field strengths are shown in figure 15. The wall thickness is 
increased, with the singular perturbation estimate of 

(Equation (7.4) is valid only for 2' % 4/& + 2(1 - e)U,,E.) 

0.0 

-0.7 

-1.4 

-2.1 

-2.8 

-3.5 
0.0 0.1 0.2 0.3 0.4 0.5 

ANGULAR DISTANCE / (RADIANS) 

Figure 15. Effect of an azimuthal magnetic field on tumbled solutions. e = 0.01; A ,  E = 160, 
Z 2  = 81; 3, 150, 492; C, 58, 1896. 
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1.0 

Since the solution of the equations of motion has been restricted to director 
orientations that are two-dimensional, the possible ‘escape’ of the director into the 
third dimension has not been taken into account. We have found magnetically- 
induced walls to be unstable in some cases for non-tumbling nematics [48] with large 
differences between splay and twist elasticity coefficients, and these structures might 
also be hydrodynamically unstable under some conditions to perturbations out of the 
plane. This question seems especially relevant in the case of polymeric nematics, where 
it has been proposed that high energy splay deformations are avoided by a twist out 
of the plane (see Meyer [49]). 

e (6 

8. Concluding remarks 
The characteristics of converging flow of tumbling nematics in the absence of an 

external field are summarized in figure 16, which is a schematic of configurations and 
transitions on the Ericksen number-e plane; increasing e corresponds to a decreasing 
temperature. For small but positive e the director profile exhibits boundary-layer 
behaviour, with a tumbling transition at a critical value of E to a configuration with 
a surface boundary layer and a splay-bend wall at the midplane. With increasing e the 
boundary layer transforms to a periodic distribution, with a maximum angle that 
increases with flow rate. There is a critical value of E in this regime at which the 
tumbling transition occurs, but to a periodic tumbled state with a radial centreline 
orientation. 

E 

0 

. __-----__ 

boundary layer-inversion wall 

4 < 
periodic (T) 

Figure 16. Schematic of flow configurations and phase transitions in the E - e plane for 
tumbling nematics. 

There is a window of stability in the neighbourhood of e = 1. Radial and 
transverse centreline profiles are energetically equal at e = 1, with an exchange of 
stability between the two configurations as e = 1 is traversed. Further increase in e 
reintroduces the tumbling transition, with periodic profiles having a transverse centre- 
line orientation. (Such a stability window, in which tumbling disappears at the 
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temperature at which e = 1, has been recorded in shearing experiments by Cladis and 
Torza [9].) 

Carlsson [I41 has noted that it is instructive to regard tumbling as analogous to 
a first-order non-equilibrium phase transition. If we adopt this viewpoint, then we find 
that in addition to the coexistence line of first-order transitions in converging flow 
there are two critical end points (CEP) limiting the stability window. Furthermore, for 
e < 1 the transition occurs with the simultaneous appearance of wall defects, and is 
thus a new instance of the analogous equilibrium defect-mediated phase transition 
[501. 

This work was supported in part by the Donors of the Petroleum Research Fund 
(ADR) and in part by the Director, Office of Energy Research, Office of Basic Energy 
Sciences, Materials Science Division of the U.S. Department of Energy under Con- 
tract No. DE-AC03-76SF00098 (MMD), supplemented by a gift from E. I. DuPoint 
de Nemours & Co., Inc. 

Appendix I 
The coefficients (a,) in equations (2.7) are as follows: 

a, = 

a, = 

a, = 

a4 = 

a, = 

a6 = 

a, = 

a8 = 

a, = 

a10 = 

a , cos2w + (as + a,)cos2W, 

-a ,cos4W - (a, - ff,)COS2W, 

- a, cos W2 sin 2 W - a, sin 2 W, 

(1 1 4  
a1 - sin4W + (a, - a,)sin2W, 
2 

- El sin2 2 w  + (+) sin2 w + (T) cosz w + 3 , (I 1 e> 
2 2 

-a,sin2 Wcos2W + a4 + 2a,sin2 W + a,, 

a , ( l  - 2cos2W)sin2W + (a, + a6)sin2W, 
(1 I f )  
(1 1 g )  

The Parodi relation, a6 - a5 = u2 + a,, has been used to simplify some equations. 

Appendix I1 
Singular perturbation analysis for e < 1 

The director equation (2.6 c) in non-dimensional form is 

where U is given by equation (4.2). To focus on the elastic boundary layer we define 
a stretching transformation, as follows: 

W($) = W d 9  (I1 2 a)  

@ - $0 = Wh. (I1 2 b)  
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To balance second order terms in equation (I1 1) we require that t ( E )  = I/JE, in 
which case equation (TI 2 b) becomes * - $0 = ?/JE.  (11 3) 
In the transformed variables equation (I1 1) then becomes 

"cos 2u/; + I]? - [(I-I!sinZw U($)  = 0. (114) 1 -( I  - 

v+[ (1 + e l  (1 + 4 
U($) is now expanded in a power series about $ = t,h0, using the fact that U($,) = 0, 
leading to the following form for the boundary layer equation: 

Here U ,  = U(I,$~). For the case of present interest e 4 1 and 
we finally obtain 

4 1, in which case 

u/;" + eU, = 0. (11 6 )  
Equation (IT 6) is integrated twice, using the condition &($o) = 0, to obtain the first 
inner expansion in terms of the outer variable $ as 

(11 7) 
u; W ( $ )  = - - E 4 $  - $0)' + C 2 J W  - $0). 2 

To evaluate the constant C, we have to match equations (I1 7) and the outer (core) 
solution given by (5.1). Because the outer equation defining W, is algebraic the usual 
limiting procedures for inner-outer expansions cannot be employed. We choose 
to match the derivatives at a position that is of order $*; matching at 
$ - $o = 1.2($* - $o) gives good agreement with computed values, leading to the 
following equation: 

+ aJ(E/EJ($ - $01, (11 8) 
where a is given by equation (5 .5 ) .  

To find the critical Ericksen number at which tumbling occurs for e < 1 we match 
the inner and outer solutions at the critical point $*, which leads to the following 
result: 

The estimate of the boundary layer thickness 6, in equation (5.6) is obtained by setting 
the derivative of q to zero and defining that point as 6,. 

An analogous perturbation analysis is carried out to analyse the splay-bend walls 
about the centerplane for e 4 1. The stretched variable near the centerline is 

$ = ?I& (I1 10) 
Equation (I1 4) is unchanged, but for the expansion about q = 0 we now use the fact 
that U; = U'(0) = 0. The first inner expansion is then a solution of 

(I1 1 I )  
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where U, = U(0). It is convenient to define a translated dependent variable by 

y = r q + n .  (I1 12) 

Expanding equation (I1 1 1) fore < 1 and small y (i.e. Kclose to - n radians) we then 
obtain 

y” - 2(1 - e)Uoy = 0. (I1 13) 

The first inner expansion in terms of the outer variable is 

Y(+> = c exp { -  J P ( 1  - e)UoEI+). (I1 14) 

We would obtain an approximation that satisfies the centreline condition by taking 
C = n, but that would violate the assumption that y is small and a value of C is not 
needed in order to compute the wall thickness. The boundary layer thickness 6, (E) 
is estimated by doubling the value of + for which the argument of the exponential 
becomes - 1, 

(I1 15) 

The boundary layer thickness near $ = +, following tumbling is obtained by using 
the stretched coordinate given by equation (I1 3) which, for small e and close to 
-n, leads to the equation 

y” + eU; = 0. (I1 16) 

The solution with y(0) = n: and y’(- 6 J E )  = 0 is 

e U; 
2 y = - - q 2  + e&6q + n. (I1 17) 

We can then estimate the boundary layer thickness &(E) by assuming that y(6,) = 0, 
giving 

S,(E)  = J(”-). - UkeE (I1 IS) 

For the general case of m-tumbling instabilities we replace the 271 in the numerator by 
2mn. 

The analysis is essentially unchanged by inclusion of a radial magnetic field of the 
form H = ( A / r ,  0, 0). The splay-bend wall is again parallel to the flow direction and 
to the radial field. The boundary layer thickness is modified by the presence of the 
field, and the singular perturbation analysis now gives a first inner approximation 
valid around y - 0 of 

Y(+) = c exp C-JN - 4UoE + Z21+} (I1 19) 

and a wall thickness of order 

2 
J[2( - e)U,,E + Z’]  * 

4(E, Z >  = (I1 20) 

Application of a transverse field of the form H = (0, B/r,  0) to the tumbled 
director field will result in a splay-bend wall perpendicular to the field for a sufficiently 
strong field. The director will now rotate a total of n radians by transversing the wall. 
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The presence of an azimuthal field changes the director equation to 

1 " ( 1 - e ) s i n 2 ~  ~ + - s i n 2 ~  = 0. 
- ( I  - 1 2 0  

- W + [  E 1 ( l + e )  e, COS2W + I ]  2 - [m 
(I1 21) 

The core (outer) solution is readily obtained by letting 1/E - 0, 

(I1 22) 

The inner solution is obtained by translating the director angle by 4 2  to 

y = w + n/2 (I1 23) 

and defining the stretched variable about the centreplane by equation (I1 lo) ,  in which 
case the first inner expansion is a solution of 

(1 - e )  (I1 24) 

For small y and e 3 1 this becomes 

y" - 2(1 - e)Uo - - y = 0, (I1 25) [ D 'I 
with a solution 

y($)  = Cexp(-,/[-2(1 - e)UoE + Z']$). (I1 26) 

The thickness of the splay-bend wall is then 
5 
L 

,/[-2(1 - e)UoE + Z'] &(E, Z )  = (I1 27) 

This solution requires that the field be sufficiently strong to create a wall of thickness 
greater than i j o ,  or Z2 S 4/$; + 2(1 - e)UoE. 
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